Hall-Effekt-Aufbau

Aus F-Praktikum SOWAS Wiki
Wechseln zu: Navigation, Suche
Edwin Hall

1879 entdeckte Edwin Hall den nach ihm benannten Hall-Effekt. Dieser Effekt sieht wie folgt aus: Befindet sich ein stromdurchflossener Leiter in einem Magnetfeld, so werden die in dem Leiter vorhandenen Ladungsträger durch die Loretzkraft abgelenkt. Diese Ablenkung geschieht sowohl senkrecht zum Magnetfeld, als auch senkrecht zur Bewegungsrichtung der Ladungsträger. Durch abgelenkte Ladungsträger wird sich auf einer Seite des Leiters eine erhöhte Ladung aufbauen, so dass ein elektrisches Feld generiert wird, das der Lorentzkraft entgegenwirkt. Die mit dem elektrischen Feld einhergehende Spannung wird Hall-Spannung U_\text{H} gennant.

Was erhalte ich durch die Anwendung des Hall-Effekt-Aufbaus?

Verwendet man den Hall-Effekt-Aufbau so können aus Widerstands- und Spannungsmessungen folgende Halbleitermerkmale ermittelt werden:

  • Flächenladungsträgerdichte n (\text{cm}^{-2} )
  • Mobilität µ (\text{cm}^2V^{-1}s^{-1})
  • Schichtwiderstand R_\text{S} (\Omega)
  • Hallspannung U_\text{H} (V)
  • Mittlere freie Weglänge \lambda (µm)

Die Messung kann bei Raumtemperatur (RT) und bei 4,2K (liquid Helium (lHe)) und jeweils im Dunkeln sowie unter Beleuchtung durchgeführt werden.

Physikalischer Hintergrund

Hall-Effekt

Der Hall-Effekt kann, wie oben beschrieben, dazu ausgenutzt werden die Ladungsträgerdichte in Halbleitern zu bestimmen. Hierzu macht man folgende theoretische Überlegungen: Der Lorentzkraft wirkt ein elektrisches Feld entgegen, so dass bei Kompensation folgendes gilt:

q\left(\vec E + \vec v \times \vec B\right) = 0

Mit der Wahl des Koordinatensystems, in dem sich die Elektronen in x-Richtung bewegen und das Magnetfeld in z-Richtung zeigt, ergibt sich \text{E}_\text{y}-\text{v}_\text{x}\text{B}_\text{z} = 0, was mit der Stromdichte \text{j}_\text{x} = \text{n}_{\text{3d}}\text{q} \text{v}_\text{x} zu Folgendem führt:

E_y = \frac{1}{n_{3d}q}j_xB_z = R_Hj_xB_z

wobei \text{R}_\text{H} = \left(n_{3d} q\right)^{-1} die Hall-Konstante ist. Mit E_y=\frac{U_H}{w}, wobei w die Breite der Schicht ist, und mit j_x = \frac{I_x}{wd}, wobei d die Dicke der Schicht ist, folgt die Hallspannung \text{U}_\text{H} und eine Vorschrift für die Ladungsträgerdichte:

U_H = R_H\frac{I_xB_z}{d} = \frac{I_xB_z}{n_{3d}qd}=\frac{I_xB_z}{n_{2d}q}\Leftrightarrow n_{2d}=\frac{I_xB_z}{qU_H}

Um also die Flächenladungsträgerdichte zu ermitteln muss man die Hall-Spannung messen. Der Strom wird selbst bestimmt, das Magnetfeld ist bekannt und durch das Vorzeichen von n lässt sich feststellen, ob die Probe n- bzw. p-leitend ist (Vorzeichen von q).

Ferner lässt sich über eine Hall-Messung ebenfalls die Beweglichkeit µ über den Schichtwiderstand \text{R}_\text{S} und Hall-Spannung bzw. Flächenladungsträgerdichte bestimmen. Der Zusammenhang sieht wie folgt aus:

\mu = \frac{U_H}{R_SIB} = \frac{1}{qn_{2d}R_S}

Die Messung des Schichtwiderstandes ist Bestandteil der Van-der-Pauw-Technik.

Softwareanwendung

Die Anwendung der Software gliedert sich in ca. sieben Schritte:

  1. Eingabe globaler Daten
  2. Wahl des elektrischen Stromes
  3. eventuelle Beleuchtung der Probe bei 4,2K
  4. Kontaktkontrolle
  5. Bestimmung des Schichtwiderstandes
  6. Messung der Hall-Spannung
  7. Speichern und eventuelles Drucken der Messergebnisse

Bevor die einzelnen Schritte im Detail beschrieben werden, können Sie im nachstehenden Bild die Hauptebene des Programmes Hall_Main_EXP2.vi sehen: FKP W HallA Hauptbildschirm.png

Van-der-Pauw-Geometrie
Bar-Geometrie

Von der Hauptebene des Programms kommt man zu den Voreinstellungen (Global settings, Auto Current, Illuminate), zu den Messvorgängen (Check contacts, Resistivity, Hall measurement, IV-Graph) und der Speicherung der Messergebnisse (Save Data, Print). Die einzige direkte Einstellmöglichkeit auf der Hauptebene ist die Festlegung der Probengeometrie: Hier kann man zwischen Van-der-Pauw- und Bar-Geometrie wählen, indem man auf das Bild unter VDP/bar klickt.