Band gap engineering: Unterschied zwischen den Versionen
P Lab (Diskussion | Beiträge) K (→Einführung) |
P Lab (Diskussion | Beiträge) |
||
Zeile 1: | Zeile 1: | ||
+ | Die Halbleiterphysik hat sich in den letzten Jahrzehnten von elementaren Halbleitern (zuerst Germanium, dann Silizium) zu Verbundhalbleitern aus der III-V bzw. II-VI Hauptgruppe entwickelt (z.B. AlGaAs). Durch Mischen dieser Elemente ist es möglich die Bandlücke des Halbleiters fast nach Belieben einzustellen, was man ''band gap engineering'' nennt. Dadurch können niederdimensionale Potentialtöpfe hergestellt werden, die direkt aus der elementaren Quantenmechanik berechenbar sind. Eine experimentelle Beschäftigung mit diesen Systemen eröffnet daher den Studierenden die didaktisch seltene Möglichkeit, die in der Theorievorlesung ''Quantenmechanik'' vermittelten Kenntnisse direkt in beobachtbare Ergebnisse umzusetzen, wobei die verwendete Mathematik erstaunlich elementar bleiben kann. Zum Beispiel können auf die Energieniveaus eindimensionaler Quantentöpfe unendlicher Höhe trivial geschlossen, solche endlicher Höhe gut konvergierend iterativ berechnet werden. | ||
− | + | ||
+ | == Präparations- bzw. Untersuchungsmöglichkeiten == | ||
+ | Unter dem Thema ''Band gap engineering'' kann man sich unter anderem folgende Bearbeitungsmöglichkeiten denken: | ||
+ | * MBE-Wachstum von undotierten Quantentöpfen und Energieniveaubestimmung | ||
+ | * MBE-Wachstum von Quantenpunkten und Energieniveaubestimmung | ||
+ | * MBE-Wachstum von dotierten Heterostrukturen, die mit temperaturabhängigen Hall-Messungen untersucht werden |
Version vom 31. Juli 2009, 11:39 Uhr
Die Halbleiterphysik hat sich in den letzten Jahrzehnten von elementaren Halbleitern (zuerst Germanium, dann Silizium) zu Verbundhalbleitern aus der III-V bzw. II-VI Hauptgruppe entwickelt (z.B. AlGaAs). Durch Mischen dieser Elemente ist es möglich die Bandlücke des Halbleiters fast nach Belieben einzustellen, was man band gap engineering nennt. Dadurch können niederdimensionale Potentialtöpfe hergestellt werden, die direkt aus der elementaren Quantenmechanik berechenbar sind. Eine experimentelle Beschäftigung mit diesen Systemen eröffnet daher den Studierenden die didaktisch seltene Möglichkeit, die in der Theorievorlesung Quantenmechanik vermittelten Kenntnisse direkt in beobachtbare Ergebnisse umzusetzen, wobei die verwendete Mathematik erstaunlich elementar bleiben kann. Zum Beispiel können auf die Energieniveaus eindimensionaler Quantentöpfe unendlicher Höhe trivial geschlossen, solche endlicher Höhe gut konvergierend iterativ berechnet werden.
Präparations- bzw. Untersuchungsmöglichkeiten
Unter dem Thema Band gap engineering kann man sich unter anderem folgende Bearbeitungsmöglichkeiten denken:
- MBE-Wachstum von undotierten Quantentöpfen und Energieniveaubestimmung
- MBE-Wachstum von Quantenpunkten und Energieniveaubestimmung
- MBE-Wachstum von dotierten Heterostrukturen, die mit temperaturabhängigen Hall-Messungen untersucht werden