Hyperfeinstruktur in der ESR: Unterschied zwischen den Versionen

Aus F-Praktikum SOWAS Wiki
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
'''315 Messung des HFS-Intervallfaktors an quasi-freiem, atomaren Wasserstoff'''
+
Dieser Versuch beschäftigt sich mit der Messung des Intervallfaktors in der Hyperfeinstruktur des atomaren Wasserstoffs.Die magnetische Wechselwirkung zwischen dem ungepaarten S-Elektron und dem Kernspin des atomaren Wasserstoffs führt zu einer Aufhebung der Entartung bezüglich der beiden möglichen Spineinstellungen vom Elektron- und Kernspin. Damit ist eine Aufspaltung in zwei Niveaus verbunden, deren Energiedifferenz im Radiobereich liegt. Sie entspricht der wohlbekannten 21 cm- oder 1420 MHz-Linie, die bei der Identifizierung interstellarer Wasserstoffwolken eine wichtige Rolle spielt. Im vorliegenden Versuch wird nicht mit atomarem Wasserstoffgas, sondern mit wohl separierten Wasserstoffatomen, die in einer gefrorenen Ammoniak-Matrix eingebettet sind, gearbeitet. Der Intervallfaktor der stabilisierten Atome wird mit sohoher Präzision durch Einsatz eines Elektronen-Spin-Resonanz Spektrometers gemessen, dass für eine Abweichung in Höhe von ca. 1% vom Literaturwert die Störung des S-Orbitals durchdas Ammoniak-Gitter verantwortlich gemacht werden kann. Außerdem wird die Gültigkeit der Breit-Rabi-Formel für das hier untersuchte System experimentell nachgewiesen.
  
 +
== Vorbemerkungen ==
  
Zu den grundlegenden Themen der Atomphysik gehört die Erklärung der Verschiebung atomarer Übergänge durch magnetische Wechselwirkung innerhalb der Atome. Diese sind im wesentlichen die Feinstruktur- (Spin-Bahn-) sowie die Hyperfeinstruktur (Hülle-Kern-) Aufspaltung. Dieser Versuch demonstriert den Einfluss eines externen Magnetfeldes auf die Übergangsfrequenzen elektronischer Spin-Flip-Übergänge in Anwesenheit spinbehafteter Atomkerne im sog. Paschen-Back-Bereich.  
+
Der Versuch findet im Labor der Arbeitsgruppe I (Polarisiertes Target) im Institut für Experimentalphysik I NB 05/496-497 unter Anleitung statt.
  
Dieser Versuch beschäftigt sich mit der Messung des Intervallfaktors in der Hyperfeinstruktur des atomaren Wasserstoffs.Die magnetische Wechselwirkung zwischen dem ungepaarten S-Elektron und dem Kernspin des atomaren Wasserstoffs führt zu einer Aufhebung der Entartung bezüglich der beiden möglichen Spineinstellungen vom Elektron- und Kernspin. Damit ist eine Aufspaltung in zwei Niveaus verbunden, deren Energiedifferenz im Radiobereich liegt. Sie entspricht der wohlbekannten 21 cm- oder 1420 MHz-Linie, die bei der Identifizierung interstellarer Wasserstoffwolken eine wichtige Rolle spielt. Im vorliegenden Versuch wird nicht mit atomarem Wasserstoffgas, sondern mit wohl separierten Wasserstoffatomen, die in einer gefrorenen Ammoniak-Matrix eingebettet sind, gearbeitet. Der Intervallfaktor der stabilisierten Atome wird mit sohoher Präzision durch Einsatz eines Elektronen-Spin-Resonanz Spektrometers gemessen, dass für eine Abweichung in Höhe von ca. 1% vom Literaturwert die Störung des S-Orbitals durchdas Ammoniak-Gitter verantwortlich gemacht werden kann. Außerdem wird die Gültigkeit der Breit-Rabi-Formel für das hier untersuchte System experimentell nachgewiesen.
+
Da die Versuchsdurchführung unkompliziert in relativ kurzer Zeit durchführbar ist und auch die häusliche Auswertung nicht sonderlich aufwendig sein wird, besteht ein Hauptaufgabenteil aus einer guten und soliden Vorbereitung der theoretischen Grundlagen zu den behandelten Phänomenen.
 +
 
 +
== Zur Theorie der HFS ==
  
 +
=== Ein Teilchen im äußeren Magnetfeld ===
 +
 +
Wird ein magnetisches Moment <math>\vec{\mu}</math> einem externen Magnetfeld <math>\vec{B}_{ext}</math> ausgesetzt, so besitzt es in diesem die Energie
 +
:<math>E=-\vec{\mu}\cdot\vec{B}_{ext}.</math>
  
Der Versuch findet im Labor der Arbeitsgruppe I (Polarisiertes Target) im Institut für Experimentalphysik I NB 05/496-497 unter Anleitung statt.
 
  
Da die Versuchsdurchfuehrung unkompliziert in relativ kurzer Zeit durchführbar ist (in dieser ersten Version keine aufwendigen Messreihen) und auch die haeusliche Auswertung nicht sonderlich aufwendig sein wird, besteht ein Hauptaufgabenteil aus einer guten und soliden Vorbereitung der theoretischen Grundlagen zu den behandelten Phaenomenen.
 
  
'''Vorzubereitende Themen:'''
+
== Vorzubereitende Themen ==
  
 
a) klassische und quantenmechanische Beschreibung des Drehimpulses, Spin
 
a) klassische und quantenmechanische Beschreibung des Drehimpulses, Spin
Zeile 23: Zeile 28:
 
e) Grundlagen eines Elektronenspin-Resonanzspektrometers
 
e) Grundlagen eines Elektronenspin-Resonanzspektrometers
  
Literatur:
+
== Literatur ==
  
 
T. Mayer-Kuckuk 'Atomphysik'
 
T. Mayer-Kuckuk 'Atomphysik'

Version vom 9. Mai 2012, 10:23 Uhr

Dieser Versuch beschäftigt sich mit der Messung des Intervallfaktors in der Hyperfeinstruktur des atomaren Wasserstoffs.Die magnetische Wechselwirkung zwischen dem ungepaarten S-Elektron und dem Kernspin des atomaren Wasserstoffs führt zu einer Aufhebung der Entartung bezüglich der beiden möglichen Spineinstellungen vom Elektron- und Kernspin. Damit ist eine Aufspaltung in zwei Niveaus verbunden, deren Energiedifferenz im Radiobereich liegt. Sie entspricht der wohlbekannten 21 cm- oder 1420 MHz-Linie, die bei der Identifizierung interstellarer Wasserstoffwolken eine wichtige Rolle spielt. Im vorliegenden Versuch wird nicht mit atomarem Wasserstoffgas, sondern mit wohl separierten Wasserstoffatomen, die in einer gefrorenen Ammoniak-Matrix eingebettet sind, gearbeitet. Der Intervallfaktor der stabilisierten Atome wird mit sohoher Präzision durch Einsatz eines Elektronen-Spin-Resonanz Spektrometers gemessen, dass für eine Abweichung in Höhe von ca. 1% vom Literaturwert die Störung des S-Orbitals durchdas Ammoniak-Gitter verantwortlich gemacht werden kann. Außerdem wird die Gültigkeit der Breit-Rabi-Formel für das hier untersuchte System experimentell nachgewiesen.

Vorbemerkungen

Der Versuch findet im Labor der Arbeitsgruppe I (Polarisiertes Target) im Institut für Experimentalphysik I NB 05/496-497 unter Anleitung statt.

Da die Versuchsdurchführung unkompliziert in relativ kurzer Zeit durchführbar ist und auch die häusliche Auswertung nicht sonderlich aufwendig sein wird, besteht ein Hauptaufgabenteil aus einer guten und soliden Vorbereitung der theoretischen Grundlagen zu den behandelten Phänomenen.

Zur Theorie der HFS

Ein Teilchen im äußeren Magnetfeld

Wird ein magnetisches Moment \vec{\mu} einem externen Magnetfeld \vec{B}_{ext} ausgesetzt, so besitzt es in diesem die Energie

E=-\vec{\mu}\cdot\vec{B}_{ext}.


Vorzubereitende Themen

a) klassische und quantenmechanische Beschreibung des Drehimpulses, Spin

b) magnetisches Moment, g-Faktor, Energie eines magnetischen Moments im äußeren Magnetfeld

c) atomare Fein- und Hyperfeinstruktur-Wechselwirkung

d) Zeeman-Effekt, Paschen-Back-Effekt, Breit-Rabi-Formel

e) Grundlagen eines Elektronenspin-Resonanzspektrometers

Literatur

T. Mayer-Kuckuk 'Atomphysik' T. Mayer-Kuckuk 'Kernphysik' Bergmann-Schaefer 'Experimentalphysik Bd IV Teil 1+2' Jedes einführende Lehrbuch zur Festkörperphysik bezgl. der ESR-Apparatur möglicherweise Angabe aus Biophysik-ESR-Versuch

Kontakt: Dr. Gerhard Reicherz reicherz@ep1.rub.de, Tel. 23542, NB 2/127


Anleitung: PDF